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A. Prior specification

Here we specify prior distributions for the parameters of the Bayesian kernel machine re-

gression (BKMR) model described in Section 2 of the main text.

We assumed β ∼ 1 (flat prior) and σ−2 ∼ Gamma(aσ, bσ), where we set the shape parameter

aσ and scale parameter bσ to each be 0.001. It is convenient to parameterize BKMR by λ ≡

τσ−2, and we assumed a Gamma prior distribution for the variance component λ having mean

and variance each set to 100 (Let aλ, bλ denote corresponding shape and rate parameters). For

the distribution of the slab f1(rm) of the variable selection prior in equation (3) of the main

text we assumed ρm = 1/rm ∼ Unif(ar, br).
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We assumed that the prior probability π that a mixture component zm (group Sg) was

included in the model had a beta distribution with shape parameters aπ, bπ. We assumed that

if a large number of mixture components (or groups) were under investigation, then a smaller

subset of these components would likely be predictive of health. We selected aπ = 2 and bπ = 6

such that a priori we would expect 25% of the components (groups) to be included. Finally, for

the hierarchical variable selection approach, for πSg we assumed that each component of the

same group was equally likely to be included in the model.

A.1. Hyperparameters for the simulation study

We set the following values for the hyperparameters in our simulation studies (described in

Section 3.1 of the main text). For the uniform slab prior on ρm = 1/rm we set ar = 0 and

br = 100. For the beta prior on π we set aπ and bπ as described in Section A for the M = 13

component scenario and aπ = bπ = 1 for the M = 3 component scenario.

B. Estimation and prediction

Here we describe the Markov chain Monte Carlo (MCMC) sampler used to fit Bayesian kernel

machine regression (BKMR) with component-wise and hierarchical variable selection described

in Section 2 of the main text (see Box below for a summary of the model specification and

notation).

To apply a standard Gibbs sampler in which samples are generated from the full conditional

distributions of each of the parameters, the augmented kernel matrix KZ,r (Section 2.2 of the

main text) must be inverted at each iteration of the sampler, which can lead to numerical

instability if the kernel is nearly singular. This problem can be avoided by integrating out

h, and obtaining posterior samples from the marginal posterior distribution of the remaining

parameters.

2



Summary of Bayesian kernel machine regression and variable selection

Model specification

Likelihood

{
y | h,β, σ2,X ∼ N(h + Xβ, σ2In)

h | τ, r,Z ∼ N(0, τKZ,r)

Component-wise variable selection

{
rm | δm ∼ δmUnif−1(ar, br) + (1− δm)P0,
δm | π ∼ Bernoulli(π),

Hierarchical variable selection


rm | δm ∼ δmUnif−1(ar, br) + (1− δm)P0,
δSg | ωg ∼ Multinomial(ωg,πSg)
ωg | π ∼ Bernoulli(π),

Priors


β ∼ 1

σ−2 ∼ Gamma(aσ, bσ)
λ ≡ τσ−2 ∼ Gamma(aλ, bλ)

π ∼ Beta(aπ, bπ)

Notation

Indices


i = 1, . . . , n subjects
m = 1, . . . ,M mixture components
g = 1, . . . , G mixture groups

Data


y = (y1, . . . , yn)T health outcomes
X covariate design matrix with rows xTi
Z exposure design matrix with rows zTi = (zi1, . . . , ziM )
{Sg}g=1,...,G partition of mixture components into groups

Parameters



h = (h1, . . . , hn)T subject-specific health effects hi = h(zi)
KZ,r n× n kernel matrix for variable selection with

(i, j)-element exp
{
−
∑M

m=1 rm(zim − zjm)2
}

r = (r1, . . . , rM )T augmented variables in kernel matrix for
variable selection, which controls smoothness of h(·)

δ = (δ1, . . . , δM )T inclusion indicators for mixture components
δSg = (δm)zm∈Sg inclusion indicators for the components in group g

B.1. MCMC sampler

Integrating over π and h and applying the prior distributions specified in Section A of the

Supplementary Material, the posterior is given by

f(β, σ2, λ, r,θ, | y) ∝ N(y | Xβ, σ2Vλ,Z,r)

{
M∏
m=1

f(rm | δm)

}
f(θ) (1)

×Gamma(σ−2 | aσ, bσ)Gamma(λ | aλ, bλ),
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where y = (y1, . . . , yn)T , X is the covariate design matrix with rows xTi , and Vλ,Z,r = In+λKZ,r.

The θ corresponds to the parameter vector for variable selection, such that θ = δ for component-

wise selection and θ = (δ,ω) for hierarchical variable selection, where δ = (δ1, . . . , δM)T is

the vector of component indicators and ω = (ω1, . . . , ωG)T is the vector of group indicators.

The term f(θ) is equal to Γ (
∑

m δm + aπ) Γ (M −
∑

m δm + bπ) under component-wise variable

selection and is equal to Γ
(∑

g ωg + aπ

)
Γ
(
G−

∑
g ωg + bπ

)∏G
g=1

{∏
m:zm∈Sg Card(Sg)−δm

}
under hierarchical variable selection, where

∑
m:zm∈Sg δm = ωg for each g.

We updated β and σ2 using separate Gibbs steps, with full conditionals given by

β | σ2, λ, r,y ∼ N(β | VβXTV−1λ,Z,ry, σ
2Vβ), where Vβ = (XTV−1λ,Z,rX)−1,

σ−2 | β, λ, r,y ∼ Gamma{ασ + n/2, bσ +WSSβ,λ,r/2},

where WSSβ,λ,r is the weighted sum of squares (y −Xβ)TV−1λ,Z,r(y −Xβ). We updated λ us-

ing a Metropolis-Hastings step, with full conditional f(λ | β, r, δ,y,X,Z) ∝ (det Vλ,Z,r)
−1/2 ×

exp{−WSSβ,λ,r/(2σ
2)} × Gamma(λ | aλ, bλ). We used a gamma proposal distribution with

mean set to the value of λ from the previous iteration and variance tuned to produce a good

acceptance rate.

Component-wise variable selection. Because sampling individually from the full conditionals

of r and δ leads to a reducible Markov chain, we instead sampled (r, δ) jointly from their

conditional distribution

f(r, δ, | β, σ2, λ,y) ∝ Γ

(∑
m

δm + aπ

)
Γ

(
M −

∑
m

δm + bπ

){
M∏
m=1

f(rm | δm)

}

by adapting the Metropolis-Hastings algorithm from Sha et al. (2004). To obtain a sample

at the sth iteration of the MCMC, this procedure generates a proposal (r∗, δ∗) by randomly
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selecting one of the following moves:

1. Randomly select m ∈ {1, . . . ,M} and set δ∗m = 1 − δ(s−1)m . If δ∗m = 0 set r∗m = 0; else,

generate the proposal r∗m from a proposal distribution Q1(·).

2. Among the components of δ(s−1) equal to one, randomly choose one (say δ∗m) and generate

the corresponding r∗m from a proposal distribution Q2(· | r(s−1)m ).

For Q1 we sampled ρ∗m = 1/r∗m ∼ Unif(ar, br), and we set Q2 to be a truncated normal distribu-

tion with mean set to r
(s−1)
m , variance tuned to have a good acceptance rate for those iterations

where move 2 was selected, and truncated to fall within the range (b−1r , a−1r ).

Hierarchical variable selection. We generalized the previous Metropolis-Hastings sampling

scheme to sample (r, δ,ω) jointly from their conditional distribution

f(r, δ,ω, | β, σ2, λ,y) ∝ Γ

(∑
g

ωg + aπ

)
Γ

(
G−

∑
g

ωg + bπ

){
M∏
m=1

f(rm | δm)

}

×
G∏
g=1

 ∏
m:zm∈Sg

Card(Sg)−δm
 , where

∑
m:zm∈Sg

δm = ωg.

At the sth iteration of the MCMC, we generated a proposal (r∗, δ∗,ω∗) by randomly selecting

one of the following moves:

1. Change the state of a group Sg. Randomly select g ∈ {1, . . . , G} and set ω∗g =

1− ω(s−1)
g . If ω∗g = 0 set δ∗m′ = 0 where m′ is the component of group Sg with δ

(s−1)
m′ = 1;

else, randomly select a component m∗ from group Sg, set δ∗m∗ = 1 and generate the

proposal r∗m∗ from a proposal distribution Q1(·).

2. Switch components within a group Sg. Among the groups with Card(Sg) > 1 and

ωg = 1, randomly choose one, say S∗g . For the component m′ of S∗g with δ
(s−1)
m′ = 1, set
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δ∗m′ = 0 and r∗m′ = 0. Among the components of δS∗g equal to zero, randomly select one,

say m∗, set δ∗m∗ = 1 and generate the corresponding r∗m∗ from a proposal distribution

Q2(·).

3. Refinement step. Among the components of δ(s−1) equal to one, randomly choose one

(say δ∗m) and generate the corresponding r∗m from a proposal distribution Q3(· | r(s−1)m ).

For Q1 and Q2 we sampled ρ∗m = 1/r∗m ∼ Unif(ar, br), and we set Q3 to be a truncated normal

distribution with mean set to r
(s−1)
m , variance tuned to have a good acceptance rate for those

iterations where move 3 was selected, and truncated to fall within the range (b−1r , a−1r ).

B.2. Estimating subject-specific health effects

To obtain posterior samples of hi, which represents the subject-specific association be-

tween exposure to the environmental mixture on health, first note that the posterior den-

sity f(h,β, σ2, λ, r,θ | y) can be decomposed in the usual way as f(h | β, σ2, λ, r,θ,y) ×

f(β, σ2, λ, r,θ | y), where the conditional distribution of h is given by

h | β, σ2, λ, r,θ,y ∼ N(λKZ,rV
−1
λ,Z,r(y −Xβ), σ2λKZ,rV

−1
λ,Z,r). (2)

Therefore for each sample (β(s), σ2(s), λ(s), r(s),θ(s)) generated from the marginal posterior in (1)

with our MCMC sampling algorithm, we generated a sample h(s) from (2).

B.3. Predicting health effects at new exposure profiles

A critical aim in analyzing the health effects of environmental mixtures is to estimate the

(multivariate) exposure-response function. This entails not only estimating hi = h(zi) at the

observed data points, but also predicting h at a collection of unobserved exposure profiles.

Predicted health effects are also of importance to regulators, who may wish to evaluate the
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health benefit attributable to proposed regulatory scenarios. For example, if z̄ denotes the

vector of mean pollutant levels, and zreg denotes the anticipated levels under a particular

regulatory scenario, then the health impact could be estimated as h(zreg)− h(z̄).

Let Znew be the P ×M design matrix (with rows znewp ) of new exposure profiles, and let

hTnew = (hnew1 , . . . , hnewP ) denote the corresponding desired predictions. In the mixed model

representation of KMR, we can consider the joint distribution of the multi-pollutant risks at

the observed and unobserved exposure profiles,

 h

hnew

 ∼ N

0, τ

 KZ,r KZ,Znew,r

KT
Z,Znew,r

KZnew,r


 ,

where KZ,r denotes the augmented kernel matrix (defined in Section 2.2 of the main text),

KZ,Znew,r is the n × P matrix with (i, j)-element exp
{
−
∑M

m=1 rm(zim − znewjm )2
}

, and KZnew,r

is the P × P matrix with (i, j)-element exp
{
−
∑M

m=1 rm(znewim − znewjm )2
}

. Following routine

calculations, the conditional posterior distribution of hnew is given by

hnew | β, σ2, λ, r,θ,y ∼ N{λKT
Z,Znew,rV

−1
λ,Z,r(y−Xβ), σ2λ(KZnew,r−λKT

Z,Znew,rV
−1
λ,Z,rKZ,Znew,r)}.

(3)

In theory, we could obtain predictions by generating hnew from its conditional distribution at

each iteration of the MCMC. However, because a large number of predictions are typically

desired (e.g., to plot the exposure-response function on a grid of points), this posterior simu-

lation can be very computationally expensive because it requires repeatedly simulating from a

high-dimensional multivariate normal distribution. Therefore, we propose to approximate the

posterior mean (variance) of hnew as its conditional posterior mean (variance) from equation (3)

evaluated at the estimated posterior mean of the other parameters.
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C. Tables and figures

Single-metal models Multi-metal model
Est. SE p-value Est. SE p-value

Pb 0.066 0.073 0.37 0.065 0.081 0.42
Mn 0.021 0.056 0.72 0.049 0.071 0.49
As −0.066 0.058 0.25 −0.102 0.067 0.13

Table 1. Estimated coefficients, standard errors (SE) and p-values from linear models of the
association between metal exposure and the motor composite score (MCS) in the Bangladesh
application (Section 4 of the main text).
As = arsenic, Mn = manganese, Pb = lead.
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Constituent Single-constituent models Multi-constituent model
Est. SE p-value Est. SE p-value

Group S1
Al 2.28 0.94 0.02 −6.20 6.20 0.32
Si 3.06 1.09 0.01 10.23 7.83 0.19
Ti 2.20 0.97 0.02 0.40 3.53 0.91
Ca 2.50 1.05 0.02 0.51 2.93 0.86
K 2.19 1.07 0.04 −3.32 3.30 0.32
Cu 1.99 1.03 0.06 −0.40 1.92 0.83
Mn 2.82 1.07 0.01 3.07 1.95 0.12

Group S2
Ni −0.28 0.88 0.75 0.69 1.43 0.63
V −1.94 1.14 0.09 −3.34 1.78 0.06
Zn 0.22 2.12 0.92 −2.12 2.72 0.44

Group S3
S −0.39 0.66 0.56 0.27 0.90 0.77

Group S4
Cl −0.41 0.99 0.68 0.55 1.19 0.65

Group S5
BC 0.34 0.91 0.71 1.86 1.69 0.28

Table 2. Estimated coefficients, standard errors (SE) and p-values from linear mixed models
of the association between elemental air pollution constituents and heart rate in the toxicology
application (Section 5 of the main text).
Al = aluminum, Si = silicon, Ti = titanium, Ca = calcium, Ni = nickel, V = vanadium, Zn
= zinc, S = sulphur, bc = black carbon, Cu = copper, K = potassium, Cl = chlorine, Mn =
manganese.
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Figure 1. Correlation matrix of Boston air pollution data used for the M = 13 component
scenario of the Simulation Study (Section 3 of the main text). The components are aluminum
(Al), silicon (Si), titanium (Ti), calcium (Ca), nickel (Ni), vanadium (V), zinc (Zn), sulphur
(S), black carbon (bc), copper (Cu), potassium (K), chlorine (Cl), and manganese (Mn).

10



Exposure data (z) generated from

Bangladesh data Boston air pollution data
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Figure 2. Median (25%, 75%) of the posterior inclusion probabilities from Bayesian kernel ma-
chine regression (BKMR) with component-wise variable selection, across 100 simulated datasets
for each of four true h(z) functions. The vector of exposure data z were generated either based
on the Bangladesh data with M = 3 mixture components or on the Boston air pollution data
with M = 13 mixture components. The truly associated components are shown in red. The
proportion of simulation iterations for which each mixture component had p-value < 0.05 under
the garrote test for Kernel machine regression (KMR) is printed below the x-axis.
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Figure 3. Median (25%, 75%) of the posterior inclusion probabilities from Bayesian kernel
machine regression (BKMR) with hierarchical variable selection, across 100 simulated datasets
for each of four true h(z) functions. Exposure data z were generated based on the Boston air
pollution data with M = 13 mixture components partitioned into 8 groups. Leftmost plots
show the posterior inclusion probabilities for each group, and middle and right plots show the
conditional posterior inclusion probabilities for the components in groups 1 and 2 given that
the group was included in the model.
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Figure 4. Relationship of manganese (Mn) and arsenic (As) with the motor composite score
(MCS), for lead (Pb) fixed at its 10th (left panel) and 90th (right panel) percentile.
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